Archive for 03.12

cocteau twins: live 1990

"A rare nostalgia moment: i didnt think any footage from the Heaven or Las Vegas tour in 1990 existed and i remember how cool it was being able to have a lighting designer for the first time that tour but have never seen how our stage looked from the audience till tonight so this is a treat to me. The whole concert in on youtube now pretty much. And my god, what a voice Elizabeth had on this tour, absolutely perfect on every song. Some rare good memories."
— Simon Raymonde, bassist

pura joya


Setlist:

Blue Bell Knoll
From the Flagstones
Iceblink Luck
Orange Appled
Wolf in the Breast
Crushed
Pitch the Baby
Cherry Coloured Funk
Road, River and Rail
A Kissed Out Red Floatboat
Heaven or Las Vegas
Aikea Guinea
Pink Orange Red

Encore:

Whales’ Tails
Mizake the Mizan

una cita real de william gibson:

If you’d gone to a publisher in 1981 with a proposal for a science-fiction novel that consisted of a really clear and simple description of the world today, they’d have read your proposal and said, Well, it’s impossible. This is ridiculous. This doesn’t even make any sense. Granted, you have half a dozen powerful and really excellent plot drivers for that many science-fiction n­ovels, but you can’t have them all in one novel.

INTERVIEWER

What are those major plot drivers?

GIBSON

Fossil fuels have been discovered to be destabilizing the planet’s climate, with possibly drastic consequences. There’s an epidemic, highly contagious, lethal sexual disease that destroys the human immune system, raging virtually uncontrolled throughout much of Africa. New York has been attacked by Islamist fundamentalists, who have destroyed the two tallest buildings in the city, and the United States in response has invaded Afghanistan and Iraq.

INTERVIEWER

And you haven’t even gotten to the technology.

GIBSON

You haven’t even gotten to the Internet. By the time you were telling about the Internet, they’d be showing you the door. It’s just too much science fiction.

IT’S PROBABLY NOT a good idea to take too personal an interest in your microbes. Louis Pasteur, the great French chemist and bacteriologist, became so preoccupied with them that he took to peering critically at every dish placed before him with a magnifying glass, a habit that presumably did not win him many repeat invitations to dinner.

In fact, there is no point in trying to hide from your bacteria, for they are on and around you always, in numbers you can’t conceive. If you are in good health and averagely diligent about hygiene, you will have a herd of about one trillion bacteria grazing on your fleshy plains—about a hundred thousand of them on every square centimeter of skin. They are there to dine off the ten billion or so flakes of skin you shed every day, plus all the tasty oils and fortifying minerals that seep out from every pore and fissure. You are for them the ultimate food court, with the convenience of warmth and constant mobility thrown in. By way of thanks, they give you B.O.
And those are just the bacteria that inhabit your skin. There are trillions more tucked away in your gut and nasal passages, clinging to your hair and eyelashes, swimming over the surface of your eyes, drilling through the enamel of your teeth. Your digestive system alone is host to more than a hundred trillion microbes, of at least four hundred types. Some deal with sugars, some with starches, some attack other bacteria. A surprising number, like the ubiquitous intestinal spirochetes, have no detectable function at all. They just seem to like to be with you. Every human body consists of about 10 quadrillion cells, but about 100 quadrillion bacterial cells. They are, in short, a big part of us. From the bacteria’s point of view, of course, we are a rather small part of them.

Because we humans are big and clever enough to produce and utilize antibiotics and disinfectants, it is easy to convince ourselves that we have banished bacteria to the fringes of existence. Don’t you believe it. Bacteria may not build cities or have interesting social lives, but they will be here when the Sun explodes. This is their planet, and we are on it only because they allow us to be.
Bacteria, never forget, got along for billions of years without us. We couldn’t survive a day without them. They process our wastes and make them usable again; without their diligent munching nothing would rot. They purify our water and keep our soils productive. Bacteria synthesize vitamins in our gut, convert the things we eat into useful sugars and polysaccharides, and go to war on alien microbes that slip down our gullet.

We depend totally on bacteria to pluck nitrogen from the air and convert it into useful nucleotides and amino acids for us. It is a prodigious and gratifying feat. As Margulis and Sagan note, to do the same thing industrially (as when making fertilizers) manufacturers must heat the source materials to 500 degrees centigrade and squeeze them to three hundred times normal pressures. Bacteria do it all the time without fuss, and thank goodness, for no larger organism could survive without the nitrogen they pass on. Above all, microbes continue to provide us with the air we breathe and to keep the atmosphere stable. Microbes, including the modern versions of cyanobacteria, supply the greater part of the planet’s breathable oxygen. Algae and other tiny organisms bubbling away in the sea blow out about 150 billion kilos of the stuff every year.

And they are amazingly prolific. The more frantic among them can yield a new generation in less than ten minutes; Clostridium perfringens, the disagreeable little organism that causes gangrene, can reproduce in nine minutes. At such a rate, a single bacterium could theoretically produce more offspring in two days than there are protons in the universe. “Given an adequate supply of nutrients, a single bacterial cell can generate 280,000 billion individuals in a single day,” according to the Belgian biochemist and Nobel laureate Christian de Duve. In the same period, a human cell can just about manage a single division.

About once every million divisions, they produce a mutant. Usually this is bad luck for the mutant—change is always risky for an organism—but just occasionally the new bacterium is endowed with some accidental advantage, such as the ability to elude or shrug off an attack of antibiotics. With this ability to evolve rapidly goes another, even scarier advantage. Bacteria share information. Any bacterium can take pieces of genetic coding from any other. Essentially, as Margulis and Sagan put it, all bacteria swim in a single gene pool. Any adaptive change that occurs in one area of the bacterial universe can spread to any other. It’s rather as if a human could go to an insect to get the necessary genetic coding to sprout wings or walk on ceilings. It means that from a genetic point of view bacteria have become a single superorganism—tiny, dispersed, but invincible.

They will live and thrive on almost anything you spill, dribble, or shake loose. Just give them a little moisture—as when you run a damp cloth over a counter—and they will bloom as if created from nothing. They will eat wood, the glue in wallpaper, the metals in hardened paint. Scientists in Australia found microbes known as Thiobacillus concretivorans that lived in—indeed, could not live without—concentrations of sulfuric acid strong enough to dissolve metal. A species called Micrococcus radiophilus was found living happily in the waste tanks of nuclear reactors, gorging itself on plutonium and whatever else was there. Some bacteria break down chemical materials from which, as far as we can tell, they gain no benefit at all.

They have been found living in boiling mud pots and lakes of caustic soda, deep inside rocks, at the bottom of the sea, in hidden pools of icy water in the McMurdo Dry Valleys of Antarctica, and seven miles down in the Pacific Ocean where pressures are more than a thousand times greater than at the surface, or equivalent to being squashed beneath fifty jumbo jets. Some of them seem to be practically indestructible. Deinococcus radiodurans is, according to theEconomist , “almost immune to radioactivity.” Blast its DNA with radiation, and the pieces immediately reform “like the scuttling limbs of an undead creature from a horror movie.”

Perhaps the most extraordinary survival yet found was that of a Streptococcus bacterium that was recovered from the sealed lens of a camera that had stood on the Moon for two years. In short, there are few environments in which bacteria aren’t prepared to live. “They are finding now that when they push probes into ocean vents so hot that the probes actually start to melt, there are bacteria even there,” Victoria Bennett told me.

We now know that there are a lot of microbes living deep within the Earth, many of which have nothing at all to do with the organic world. They eat rocks or, rather, the stuff that’s in rocks—iron, sulfur, manganese, and so on. And they breathe odd things too—iron, chromium, cobalt, even uranium. Such processes may be instrumental in concentrating gold, copper, and other precious metals, and possibly deposits of oil and natural gas. It has even been suggested that their tireless nibblings created the Earth’s crust.

Some scientists now think that there could be as much as 100 trillion tons of bacteria living beneath our feet in what are known as subsurface lithoautotrophic microbial ecosystems—SLiME for short. Thomas Gold of Cornell has estimated that if you took all the bacteria out of the Earth’s interior and dumped it on the surface, it would cover the planet to a depth of five feet. If the estimates are correct, there could be more life under the Earth than on top of it.

At depth microbes shrink in size and become extremely sluggish. The liveliest of them may divide no more than once a century, some no more than perhaps once in five hundred years. As the Economist has put it: “The key to long life, it seems, is not to do too much.” When things are really tough, bacteria are prepared to shut down all systems and wait for better times. In 1997 scientists successfully activated some anthrax spores that had lain dormant for eighty years in a museum display in Trondheim, Norway. Other microorganisms have leapt back to life after being released from a 118-year-old can of meat and a 166-year-old bottle of beer. In 1996, scientists at the Russian Academy of Science claimed to have revived bacteria frozen in Siberian permafrost for three million years. But the record claim for durability so far is one made by Russell Vreeland and colleagues at West Chester University in Pennsylvania in 2000, when they announced that they had resuscitated 250-million-year-old bacteria called Bacillus permians that had been trapped in salt deposits two thousand feet underground in Carlsbad, New Mexico. If so, this microbe is older than the continents.

It is a natural human impulse to think of evolution as a long chain of improvements, of a never-ending advance toward largeness and complexity—in a word, toward us. We flatter ourselves. Most of the real diversity in evolution has been small-scale. We large things are just flukes—an interesting side branch. Of the twenty-three main divisions of life, only three—plants, animals, and fungi—are large enough to be seen by the human eye, and even they contain species that are microscopic. Indeed, according to Woese, if you totaled up all the biomass of the planet—every living thing, plants included—microbes would account for at least 80 percent of all there is, perhaps more. The world belongs to the very small—and it has for a very long time.